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ABSTRACT 

A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which 
the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible 
strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline 
the requirement, approaches, and recent progress of the suspension mount processes. 
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1. INTRODUCTION 
An important emphasis of the International X-ray Observatory (IXO) mission is high-resolution imagining spectroscopy. 
To achieve this goal, a large x-ray grazing telescope is combined with a high energy resolution detector to achieve a 
large effective area of about 3 m2 in the soft x-ray band < 10 keV. A grating system is also use for high-resolution 
spectroscopy at the lower end of the energy band.1 Segmented, grazing incidence, Wolter type I optics, is chosen to 
provide the large effective area. The mission requirement for angular resolution is 5 arc-seconds, measured in half-
power-diameter (HPD). This is a significant technological challenge to meet, considering the required compactness of 
the telescope’s reflecting surfaces. The challenges include forming the mirror into precise optical forms, aligning the 
mirror, and mounting them. Metrology of the mirrors, sub-systems and the full telescope all needs technology 
development. In this paper, we will focus on the effort of mirror mounting, at NASA’s Goddard Space Flight Center, to 
meet the challenges posed by the thinness of the mirror segments. 
 
To meet the mission requirements, a baseline telescope design was developed at NASA in which the optical system, 
known as the Flight Mirror Assembly (FMA) is 3.3 m in diameter, with a focal length of 20 m. The design of the 
telescope’s construction is modular2,3. It consists of a nest of 361 concentric shells, distributed in 3 rings. Each shell 
consists of segmented pairs of mirrors, integrated into separate modules. There are all together 60 modules: 12 inner, 24 
middle and 24 outer modules. Each module consists of from 100 to 140 mirror shells (and twice that many mirror 
segments). The radial breaks of the sections are chosen for optimal optical throughput and also from the consideration 
that the mirror segments, nominally 15° or 30° in angular span, are not wider than 400 mm in azimuthal length. The 
axial length of the mirror segment is 200 mm for each stage of primary and secondary x-ray reflection. The mirrors are 
formed from 0.4 mm thick glass substrates. 

The current error budget calls for an FMA-level requirement of angular resolution of 4 arc-seconds. Flow-down of the 
error budget allocates 2.4 arc-seconds for individually mounted mirror. The crucial technologies that are needed to be 
developed to meet these requirements, specifically, are: first, to develop a glass forming technique that allows fabricating 
mirror at the 2 arc-seconds level with glass of thickness of 0.4 mm; and secondly, to develop a mirror handling technique 
which allows aligning and mounting these lightweight mirror segments with sub-arc-second mounting error. These 
mirror segments can be thermally formed on precise mandrel. The forming process (“slumping”) aims for the glass 
segment to take up precise low order figure. High-frequency surface roughness, which is inherent in the glass and is 
acceptable in the original smooth glass substrate, is preserved in the thermoforming.4 The mounting processes, which 

Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray,
edited by Monique Arnaud, Stephen S. Murray, Tadayuki Takahashi, Proc. of SPIE Vol. 7732,

77323Q · © 2010 SPIE · CCC code: 0277-786X/10/$18 · doi: 10.1117/12.857559

Proc. of SPIE Vol. 7732  77323Q-1

Downloaded from SPIE Digital Library on 09 Aug 2010 to 128.183.56.12. Terms of Use:  http://spiedl.org/terms



 

 

include mounting of individual mirrors for measurement (the metrology mount) as well as the process that allows the 
mirror to be aligned and integrated, are the subject of this paper. 
 
1.1 Challenges and constrains 

Currently, at NASA’s Goddard Space Flight Center, the baseline design of the FMA consists of over 14,000 segments, 
each of 0.4 mm thick. (An entirely different approach, not addressed here, is pursued by ESA where a module is formed 
by stacking specially wedged silicon wafer.5) The mirror surface area and mass permitted by the spacecraft require an 
areal density of the mirror segments of roughly 1 kg/m2. With the choice of glass substrate (with a mass density of ~ 2.5 
x 103 kg/m3), the thickness of these mirrors is therefore limited to approximately 0.4 mm. Substrate substantially thicker 
than this will not be able to meet the mass or the area requirement. Within these broad parameters, the critical challenge 
in the optics thus lies in attaining the angular resolution with these thin glass mirrors, and to produce, align and mount 
them within schedule. Given this axial length of 200 mm, 1 μm error peak-to-valley in low order axial figure error, for 
example, in sag, results in an error of about 8 arc-seconds in the mirror’s axial performance, measured in HPD. The 
mounting, which produces figure distortion of low order, therefore requires sub-μm precision. The limit on the 
amplitude of figure distortion is even more stringent for error of higher spatial frequency, which may occur depending 
on the number of boundary points in mounting the mirrors.  

2. MIRROR MOUNTING 
Besides figure imperfection in the mirror to be mounted (which may come from error in forming these mirrors, or from 
distortion due to coating of glass segments), sources of mirror distortion include: (1) gravity sag during metrology and 
other ground tests, during assembly, and gravity relief after launch, (2) over-constraint of the mirrors from mounting, 
and (3) thermal distortion. For the purpose of the present discussion on mirror mounting, we will not address the figure 
error in the original mirror segments, such as errors when forming the mirrors and from coating them. The mirrors, 
depending on how they are affixed into the telescope housing and the mirror assembly’s thermal control, will suffer from 
strain arising from CTE (coefficient of thermal expansion) mismatch, and temperature non-uniformity due to uneven 
heating as well as thermal lag in getting to thermal equilibrium. These has been addressed elsewhere. We will instead 
focus on the distortion due to self-gravity and mounting. Below, we will describe our process in which a mirror segment 
is suspended to minimize its self-gravity sag, and bonding processes in which the mirror is temporarily bonded into a 
CTE-compatible strongback for metrology and subsequent alignment and mounting.  

Since the optics on IXO is technically most challenging for the mission, two alternative means of mounting the mirrors 
are pursued in parallel in order to reduce risk associated with integrating the mirrors. Both of the mounting efforts are 
based on thermally formed (‘slumped’) glass mirrors produced at NASA’s Goddard Space Flight Center (GSFC). The 
slumped glass technology is also developed partially for the upcoming hard x-ray mission NuSTAR, even though the 
two missions have different requirement in angular resolution. The two methods of mirror integration that are developed 
are being pursued separately at the Smithsonian Astrophysical Observatory (SAO) and at Goddard6,7. For reason which 
will be clear later on, the approach taken at Goddard is known generally as the “suspension mount”; whereas the 
approach taken by SAO is known as the Optical Alignment Pathfinder (OAP). For the suspension mount, to facilitate 
technology development of mirror mounting, the mounting procedure is further divided into two parts: a temporary or 
transfer mount where a mirror is to be temporarily mounted onto a strongback for the purposes of metrology, 
transportation and alignment; and a final permanent mount where the mirror is subsequently mounted onto its proper 
housing. The advantage of this approach is that alignment can be done separately from the permanent mounting and 
therefore is not necessarily limited by the environment or space around the module. There are more options in 
controlling the mirrors positions and orientations, and also for mirror metrology, for example. The OAP approach is to 
carry out the alignment in the housing module and affix the mirror in place with a single platform. This approach 
eliminates the need of a separate mount. The choice of having separate platforms for the temporary and permanent 
mounts in the suspension mount approach is also consistent with the overall mounting philosophy that the mirror figure 
is to remain as undisturbed as possible throughout the mounting process. This is in contrast to more active OAP 
approach that may attempt to adjust the mirror into its perfect form during the mounting process. In this paper, we will 
address the suspension mount development. Our goal is to align and mount the mirror in successive steps so that the 
optical figure of the mirror segment is preserved in every step.  
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2.1 Self-Gravity Distortion and Mirror Suspension 

The suspension mount process, as the name implies, begins with suspending, that is, hanging, the mirror. The mirror is 
hung with strings so that the mirror surface, in its near vertical orientation, remains in a minimally distorted form. 
Specially, the process proceeds in the following fashion: (1) A given thermally slumped mirror is suspended at two or 
more points by strings, so that the bulk of the mirror is vertical or near vertical. This orientation minimizes the force of 
gravity normal to the mirror surface. Finite-element models were used to guide the choice of the attachment points. (2) 
The suspended mirror is temporarily affixed to a strongback---a stiff structure made of the same material, or material 
with the compatible CTE---in a fashion such that all the forces involved in this fastening is sufficiently small. The 
bonding can most easily be made at the backside of the mirror. At this point of the development, we use pins floated in 
near-frictionless air-bearings, or nano-actuators with force-gauge attached, to achieve the small (sub-milli-newton) force.  
The attachment point can also be at the mirror’s perimeter, where the force can be larger but the risk of buckling the 
mirror is also larger. (3) The bonded pair---the mirror and its strongback---now form an essentially rigid body, and can 
then transferred and situated for metrology, alignment and further processing. In particular, the mirror on its strongback 
can now be transferred to the module housing, be aligned optically to achieve proper focus. (4) The aligned mirror can 
then be ‘transferred’ to the housing by bonding it onto the module housing and releasing the temporary bonds. The 
strongback can therefore be removed to give room for the mirror in the next shell.  

The suspension method is designed to minimize gravity distortion. Gravity sag of mirror in ground operation is roughly 
proportional to g sin(α) where g is the acceleration due to gravity, and angle α is that of the mirror (say, the center 
meridian) to vertical. If supported only at a small number of points, typical IXO mirrors will generally have too large a 
sag, except for small angle α (for instance, 1° or less.). Therefore, to reduce the gravity distortion without violating other 
constraints such as the dimension and thickness, we are left with the following options: optimizing the strategic locations 
and significantly increase the numbers of the mounting points; or keeping α small by the orientating the mirror vertical. 
We had previously developed methods for supporting a mirror with a large ~ 200 number of soft support points, but 
denser supports are still preferred and large displacement of the mirror due to the soft springs are difficult to managed 
operationally. We turned to a vertical solution by suspending the mirror.  

The simplest suspension method is a 2-string suspension, in which the mirror is simply suspended at two points at one 
end of the near-conical mirror segment. For a symmetric configuration, the separation of the suspension point is uniquely 
determined to ensure that the center of gravity is in the same vertical plane containing the suspension points. For 
example, for an ideal thin circular arc with radius R and angular span Θ, the chord length separating the suspension 
points is L = 2R sin(Θ/2) /(Θ/2), or 2R sinc(Θ/2). So, a cylindrical mirror will remain vertical when hung at such 
separation. For a realistic mirror, the suspension is similar except for a small correction due to its deviation from a 
perfect cylinder and a non-zero mirror thickness. It is also important to point out that the mirror is not necessarily in the 
most undistorted state with its central meridian vertical. Vertical force of gravity acting along the surface of the mirror 
will tend to ‘drag’ the mirror down and cause an out-of-plane reaction from the mirror. This self-gravity sag of the 
mirror in its tangential direction (approximately vertical in this orientation), even though very small, is not energetically 
favorable for the distortion to be sheared entirely “in-plane”. The mirror responds to this gravity sag by “curing up” to 
create an azimuthally varying tilt, corresponding to a focus error in the focal plane. Similar “cone angle variation” along 
the mirror azimuth occurs regardless of whether the mirror is one in the primary or secondary stage with different cone 
angles, or for that matter, whether it is a cone or a cylinder. It also does not depend on the detailed of intrinsic axial 
curvature. For example, for a mirror with a radius of R  = 242 mm, Θ = 50°, the variation of angular tilt corresponds to a 
focusing error of about 8” rms diameter. However, unlike the sag error, the same suspension error occurring on the 
primary mirror and the secondary mirror, and will cancel each other. Second (axial sag) or higher order error from the 
two-string suspension is negligible. Distortion of a hung mirror can further be reduced by suspending the mirror at more 
than two points. For example, a 4-string configuration can be used.  

In practice, kelvar strings are attached to the top end of the mirror, and the strings run vertically. For the dimension of 
mirrors under studied, sufficiently precise L can be obtained in practice to assure that mirror tilt is better than, for 
example, 0.1°. Precision of L necessarily depends on the size and cone angle of the mirror segment. Finite element 
modeling shows that mirror distortion is negligible for such small angular tilt. For the 4-string version, a whiffle-tree 
style implementation, with crossbars for each pair of strings, is used to reduce mirror distortion by re-distributing the 
load to more azimuthal positions at finer spatial scale. (A simple direct 4-string suspension is statically indeterminate, 
and fine adjustment of strings tensions, or lengths, especially of stiff strings, is needed.) In the whiffle-tree 
implementation, the tension of the strings are self adjusting (to one-quarter of the weight of the mirror). Like its 2-string 
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version, the positions of string attachment are necessarily constrained and optimized in order to have the center of 
gravity properly placed. To achieve negligible distortion (sub-arc-second), 4-strings suspension is needed for mirrors 
with 50° angular span; and 2-string suspension is sufficient for 30° mirrors. 

2.2 Temporary Transfer Mount 

Having the mirror set up in suspension and thus remaining in acceptable undistorted form, the mirror is ready to be 
‘temporary-mounted’. To develop mounting methods, we fabricated thermally-compatible (with matching coefficient of 
thermal expansion, CTE) strongback for mounting mirrors. They can be fabricated from the same glass of the mirror 
substrate, or from metal such as titanium (Ti) or kovar. Glass strongback are exactly CTE-matched to the mirror. The 
CTE of Ti alloy that is reasonably close to that of the glass of the mirror, Schott D263, to within 1.5 x 10-6 /°C. The CTE 
of the kovar material was tested to be 10 times closer, to within 0.15 x 10-6 /°C of that of the glass. Nevertheless, 
machining of the metal strongback can be much easier, be done more precisely and the structure can be made into much 
more sophisticated form. The mirror is primarily captured onto the strongback at the back of the mirror. The strongbacks 
are curved (or flat) structures having a number of pins for a mirror to be bonded to their tips. In order to capture the 
figure of the suspended mirror without introducing additional distortion, the pin can only impart a small force to the 
mirror. From finite element analysis, for 4-pin mounting at general position not too close to mirror’s corner, force 
normal to the mirror surface is limited to < 1 mN in order not to distort the mirror in its sag. The force to alter a mirror’s 
local tilt angle is even smaller for a 4-pin mount.  

Within this general context, the heart of the matter is therefore the method of capturing the mirror onto the strongback 
without causing unacceptable distortion. This capturing is most easily accomplished with some sort of bonding. To guide 
technology development, we lay out a set of requirement for this crucial process: 1) The figure of the mirror must not be 
degraded (by more than 0.5 arc-second, assuming similar error budget for the subsequent transfer). 2) The mirror must 
be bonded to the strongback with sufficient strength and in sufficient number of bonds, to allow positioning and 
orienting of the segment without unacceptable self-gravity distortion (<< 0.5 arc-seconds). 3) The bond must be de-
bondable for transfer to a permanent housing without introducing additional displacement. 4) The temporary-bonded 
mirror must be sufficiently free of stress such that, after the transfer and the temporary bonds removed, the mirror figure 
does not change by more than 0.5 arc-seconds. 5) The locations of the bonds and associated fixtures must be compatible 
with subsequent alignment and permanent bonding processes. 6) The number of bond locations is to be optimized, to 
obtain the smallest number of points practically feasible. 7) The temporary bonding process of a mirror segment must 
not take more than 4 hours to complete. This last requirement, strictly speaking, is a requirement on the mounting 
of the IXO mirrors in the production phase, rather than in the technology development phase. Automation in the 
production line can improve assembly efficiency. We nevertheless include this requirement to anticipate a process 
that can be automated in a straightforward way.  

3. MIRROR TEMPORARY TRANSFER BOND 
3.1 General Considerations 

Recalling that the final configuration of a module is that of a wedge of a ring, we choose to load the segmented mirrors 
from the back of the wedge, where the opening is largest. The module housing is therefore designed with a back end 
opening. With this geometry, the most straightforward way to temporarily hold the mirror for transfer is to hold it from 
its back. In this way, the smallest mirror of a module has to be loaded first, followed by successively larger mirrors. We 
have been experimenting with backside bonding and analyzing its mechanics for this configuration. The key, as stated 
above, is to maintain a very low force on the mirror or, equivalently, to demand that only sufficiently small 
displacements occur at the bond. It is easy to show that the mirror is most sensitive to small force in the direction normal 
to the mirror’s surface, and that has been the focus of investigation. 
 
Several geometries and mechanisms were investigated before: (1) Direct bonding of mirrors with epoxy onto tips of 
adjustment screws with fine pitch (25 μm thread was used), where the screw lengths are pre-set to match the mirror at its 
back; (2) Bonding onto pins in low friction bearings. (3) Bonding of a mirror first to pins that sit on air-bearings. These 
pins have equilibrium positions pre-set to those approximately match the surface. Air-bearings have sufficiently low 
‘spring constant’ and the normal forces acting on the mirror is determined to be sufficiently low. The pins are to be 
subsequently bonded to its housing. (4) Bonding of mirrors to pins that are attached to micro-force gauges and actuators. 
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In this way, the forces (as small as 0.1 mN) can be gauged properly and can provide quantitative correlation with the 
result. 

In addition, even in this configuration that the strongback has to be situated at the backside of the mirror, the bond points 
need not be limited to the mirror’s back surface. Bonding locations can be, for example, at the perimeter of the mirror. 
The mirror can support much larger force tangentially without distorting the mirror significantly (ten’s of, or up to 100, 
mN in the mirror’s axial direction, versus < 1 mN in the surface’s normal direction). On the other hand, even a small 
axial displacement, as small as ~ 10 nm) of mirror can cause buckling, which translates directly to sag error. We have 
tested mirror bonded in this way at the edge, to flexure that can flex in the axial direction. We will discuss each of these 
approaches in the following sections. Some of the results that was reported before are summarized.  
 
The first method of bonding, direct bonding of a mirror onto pins on a strongback, is straightforward. It have achieved 
good repeatability for 4-pin mounts. In this simple scheme, a mirror in suspension is brought to contact with the pins on 
the strongback to within ~ 0.2 mm. The mirror and the strongback are then separated before epoxy beads, are applied at 
the tips of the pins and the mirror is brought back into contact with the pin again. However, extending this procedure to 
more pins in order to facilitate the transfer to an external structure encounters some difficulty. The direct insertion of a 
bead of epoxy to bond the mirror to the pins causes displacement of the mirror relative to the pins, and it shows up as a 
variation in axial tilt angle---a simple twist of the mirror---in a simple rectangular style 4-pin bond and higher order 
figure error in a configuration with more than 4 pins. The induced displacement is caused by a combination of the non-
uniform size of the epoxy beads, uneven epoxy shrinkage and surface tension of the adhesive.   

To reduce the impact of epoxy, the method is modified to get around this undesirable “epoxy-volume” effect by first 
bonding the mirror onto pins that are “free”, so that the any change in the bond line can be accommodated. The pin is 
subsequently fastened onto the strongback in any mechanism in which the force is primarily directed radially on the 
shafts of the pins, thereby without affecting the pin in the direction normal to the mirror surface. For the choice of pins 
of suitable sizes, given a typical coefficient of friction of 0.5, say, between aluminum and steel, a pin having a mass of 
0.2 g and with a diameter of about 1 mm is required in order for it not to exert a force normal to the mirror surface just 
from frictional force. It turns out that a pin this small is not strong enough to hold the mirror in place. The bending of the 
pins after the removal of the suspending strings imparts bending moments local to the bond points. These local moments 
from pin-bending were demonstrated in surface metrology of mirrors bonded this way and the mechanical response was 
verified in models. Stronger pins sliding on ball bearing, thus having smaller coefficient of friction, is another option. 
We tested a set of linear bearing with pins of 2.7 g in mass and 3 mm in diameter. The coefficient of friction was smaller 
and measured at 0.12, but because of the larger mass, the frictional force is still appreciable, at about 4 mN normal to the 
mirror surface. 

3.2 Bonds to pins on air-bearings 

A set of air bearings provides very little friction to bonding pins. These work with larger pins with 6.35 mm in diameter. 
The pins are floated in their housings with sheaths of air cushion in tight gaps of approximately 10 μm. The “friction”, 
measured from the angle that the pins begin to slip in either direction from its neutral position, is small ~ 0.002, if it is at 
all measurable. However, imbalanced air-flow, from imperfection in machining the tight gap where air flows, causes the 
pins to move forward or backward simply by air-dragging. By lightly polishing the pins, we were able to established 
equilibrium states of the pins so that their neutral positions are close (~ 1 mm) to what are required to match the mirror 
surface. The pins then will gently oscillate about their equilibrium positions. Precise setting of the equilibrium positions 
and gentle profiling of the pins can ensure very small force from the pins onto the mirror. The restoring force is 
estimated, from the periods of oscillation, to be 0.1 – 0.4 mN/mm. More direct measurement with force gauge coupled to 
pins on air bearings demonstrated forces as small as 0.016 mN/mm over nearly the entire length of the pin and is 
essentially linear. Some pins are not as good due to difference in machining. Nevertheless, such force is sufficiently 
small for our application.  

Mirrors were bonded to the pins floated in these low friction bearings. The procedure was repeated many times, from 
which very good repeatability and small distortion of low order figure was achieved. The second order error is shown to 
repeat particularly well. The fastening mechanism of the pin to the strongback was a major source of error, as it did not 
entirely live up to the expectation that the adhesive only act radially onto the shafts of the pins. Surface tension of the 
epoxy fluid and its change during the curing phase may have contributed to the mirror’s displacement. Difficulty in the 
application of the minute amount of epoxy also posed issues in the operation. Despite the fact that the bonding was done 
in an enclosure for reduce air turbulence, the mirror is nearly free-floating in this hanging mode, with the pins attached. 
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One of the more unexpected issue is the cleaning of the air-bearing after each bonding. It was difficult to clean these pins 
and bearings and to restore them to the original state perfectly well. So, despite early success, the bonds occasionally 
were not as good as expected. The process can further be developed, by improving the operation (quieter environment 
for operation, better cleaning methods). 

Figure 1. Mirror bonded on pins which were seated in air-bearings. The pins are modified so that they, when placed 
horizontally, were able to stay in their equilibrium positions that were designed to match the geometry of the mirror. 
The oscillations of the pins about their equilibrium positions are sufficiently gentle that the force along the shafts, and 
thus normal to the surface of the mirror, were small for reasonable amplitude of displacement. (Left) A mirror bonded 
to the tip of the pins. (Right) The backside of the strongback, showing the manifold that supplied air to float the pin. 
The pins are subsequently bonded to caps on the bearings’ housings. 

     
  

Figure 2. Low order parameters characterizing a mirror bonded to pins with air-bearings, as a function of the mirror’s 
azimuth. The parameters were derived from interferometric measurement of the mirror surface. The top panel shows 
the variations of overall radius. The middle panel shows the variation of the cone angle across azimuth. The bottom 
panel shows the axial sag. 

Figure 2 shows the repeatability in a 
series of measurement of a mirror 
bonded to the pins on air-bearings. The 
mirror radius is nominally 242.5 mm 
and spans 50 degrees. Bonds are done 
at four points, with two in each 
azimuths where the mirror was first 
suspended. Low order repeatability is in 
general quite good. Dependence on 
azimuthal angle of radius variation is 
unimportant at this level, as the image 
is insensitive to radius change at a few 
micrometers. We noted that the 
absolute radius and a linear dependence 
could not be obtained from the 
measurement due to the nature of 
interferometry and the orientation (roll 
angle) of the cylindrical null. The tilt 
angle (“cone angle”) variation at arc-
second level is important as it focus the 
image at particular azimuthal sub-

aperture at different position in the focal plane. Again, we noted that the result contained a component of cone angle 
variation that could not be separated from a simple tilt of the cylindrical null.  
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3.3 Bonds to pins with control force 

The methods described above relied on qualifying the (small) force, before hand, that the mount will have on the mirror. 
This was done by modeling as well as measurement with a separate set up. A better way is to have direct knowledge of 
the force in real time. To more quantitatively control the force of the pin to which the mirror is bonded, a micro-force 
gauge was attached to each pin and was driven at the back with an actuator. The gauges are capable of measuring forces 
along the pin/shaft direction with a resolution better than 0.01 mN. The actuators are capable of driving the shaft with a 
resolution of 10 nm. These are adequate precisions for the present purpose. In the present configuration, a mirror is 
suspended from the 4-string suspension mount described above, and therefore free from any significant distortion due to 
gravity. The whole platform is placed in front of a interferometer with a set transmission cylindrical null lens. The set of 
cylindrical null lens converts the planar wave front from the interferometer to a cylindrical wave front, allowing 
measurement of the mirror in a single shot. The interferometer, employing a dynamical interferometry, permits 
measurement of the hung, and therefore mildly swinging, mirror. On the mounting platform, three of the pins, in a 
triangular configuration with one near the top and two near the bottom, were used to slightly adjust the orientation of the 
mirror in such a way that the it was measurable with the interferometer, and the mirror was pushed into position with 
known and acceptable forces. The actuators are controlled automatically with close-loop feedback from the force sensors 
with defined forces. Because of the automatic adjustment of the pins’ forces, this mounting platform, containing a 
strongback (currently made of kovar), pins, actuating mechanisms, force gauges and controllers, is referred to as the 
‘smart pin’ metrology/mounting platform. 

Figure 3. Smart-pin experimental platform. (Left) The picture shows the backside of the platform and the instrumentation. 
Three actuators were used for stabilizing the mirror before bonding and for adjusting the mirror with sufficiently low 
force. A set of displacement sensors mounted separately were used to acquire neutral positions of the mirror. Four 
other actuators were used to maintain the bonded mirror continuously to zero-displacement. (Right) A force gauge at 
the top of the fixture was used to maintain low forces. 

    
 

A series of measurements were carried out to test the repeatability of the forces and also of the measured parameters. In 
the test, a mirror was hung with a 4-string suspension mount, stabilized by the three actuated pins. The mirror was 
originally not exactly vertical, by design, and it only leaned on the three actuated pins. The simple contact between the 
pins and the mirror allowed, barring negligible frictional force, complete freedom of the mirror in the direction tangential 
to the mirror surface. The stabilization is accomplished with close-loop control with a set of input force parameters. The 
input forces were pre-determined from a preliminary test. For the dimension of the mirrors and the suspension 
parameters we used, the forces were typically 1 mN at the bottom pins and 0.1 mN at the top pin. The same mirror was 
measured five times in the repeatability test. It was found that the repeatability is excellent with these smart pins. Figure 
4 shows the result, broken down in low order axial terms, as a function of azimuths. 
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The metrology mount was extended to perform also as a mounting platform by simply adding more actuating pins. A 
rectangular configuration of 4 pins was chosen. In this conception, the mirror are stabilized with the three pins as 
described above. The mounting four pins are then zeroed to provide reference to zero force. The mirror is subsequently 
bonded onto the four mounting pin and zero force will be maintained then with the same close-loop control. In practice, 
UV-cured epoxy will be used with the epoxy pre-deposited on the pins’ heads. A technique of curing the epoxy with UV 
radiation in multiple steps was also developed for this and other purpose. The fabrication of hardware and building of 
platform was recently completed. Preliminary runs of tests to check out the functionality of the system were in progress. 
A series of tests of ‘zero-force’ bonding is planned but, as this manuscript goes to the publisher, the tests on actually 
bonding a mirror have not yet been carried out. 

A set of displacement sensors were mounted separately to monitor specific position of the mirror to be bonded. The 
sensors were mounted separately to avoid disturbance to the mirror mount from the sensors and its controllers. Neutral 
displacement levels were obtained from long term averaging of the mirror position before bonding, as the mirror 
suspended was not completely steady. Oscillations with an amplitude of about 10 μm could be achieved in the 
experimental environment where the mirror is placed in an enclosure. Sensor data were used as feedback for a close-loop 
actuation in the bonding process. 

Figure 4. Smart-pin metrology. Low order parameters from a repeatability test of the smart-pin platform, used as a 
metrology mount. The mirror was suspended but not bonded. Excellent repeatability were obtained in different runs 
where forces to stabilize the mirror was set to obtain surface measurement with an interferometer. 

 
3.4 Edge bonding 

In contrast to the bonding onto the mirror’s backside, bonding to the mirror’s thin edge offers some advantage. If the 
bond is properly placed at the thin edge, most of the force will be directed along the mirror’s surface, rather than 
perpendicular to it, which is more detrimental. If bonded to the mirror edge at the axial ends, the mirror is also much 
stiffer and therefore can support much greater forces. Modeling shows that for a mirror bonded at six axial locations 
(three each at the mirror’s top and bottom), the mirror can support ten’s of mN before the mirror buckles and shows 
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significant axial sags. The force limit certainly depends on the size of the mirror and the positions of the bonds. The 
geometry may not be the most straightforward to be incorporated into the module housing described above, nor it is easy 
to apply a small bead of adhesive within the thickness (0.4 mm) of the glass segment, but these certainly are not limits in 
a fundamental sense.  

Figure 5. (Left) Mirror was to be bonded to a rigid pin at the bottom. The pin is in the form of a screw that can be coarsely 
adjusted. The set up is placed on a precision vertical stage that is used to adjust the precise vertical position of the 
mirror relative to the fixed pins. Epoxy was not applied yet. (Right) Mirror is bonded at the top to thin slivers. The 
slivers are sufficiently soft to absorb any dimension adjustment in the vertical/axial direction but yet sufficient stiff to 
hold the mirror in place in the horizontal plane. 

    
 

Figure 6. Low order figure variations from edge-bond mount. The top panel shows the radius variation. As noted before, the 
absolute radius could not be obtained from such measurement. The middle two panels show the cone angle and sag 
variations, which were very uniform. The bottom panel shows the residual surface after these three low order terms 
were removed. 

We have tested this concept as an 
alternative to the default backside 
practice. It was found that, to achieve 
the still rather small force that is 
required, the pin (what we generically 
call the structure that links the mirror 
to the strongback) has to be rather 
small/thin. If the pins align more or 
less with the plane of the mirror’s 
local surface, that is, the pin being 
vertical, there are severe restrictions 
on the weights of the pins. Moreover, 
it is not easy to position the pins in 
this orientation. Based on these 
considerations, we settled on the 
following geometry that is placed 
horizontally instead: a set up in which 
rigid pins were positioned at the 
bottom, with height adjustment to 
meet the mirror edge, and a set of 
thin flexures on the top. Figure 5 

shows the joints of the mirror to the strongback. The flexure is essentially a thin sliver in that they can flex in the vertical 
direction but can support the mirror well in the horizontal plane. To satisfy the small force requirement, we used 75 μm 
thick, 5 mm wide, and 1 cm long slivers. Such thickness can readily be available in the form of stainless steel shims. The 
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thermal compatibility of the stainless steel material is certainly far from ideal, but it was useful for a proof of concept. 
We also experimented with CTE-matched glass slivers, even though they are not quite available in such thickness. The 
slivers used had stiffness of ~ 0.1 mN/μm, which is quite adequate for the purpose as a flexure.  

Preliminary result was encouraging. We were able to obtain result with very small low order errors in the first few trials. 
Figure 6 shows an early attempts demonstrating ~ 0.1 /μm of sag (rms) variation. This was expected since the flexures 
were designed to have low axial forces. What is more interesting is that the bonding consistently shows a very uniform 
first order (“cone angle”) variation across the azimuth. This is more surprising since the sized of the epoxy beads used 
was not really as fine as the thickness of the mirror, implying possible imbalance of force from the asymmetric 
distribution of the epoxy at the front and back of the mirror. The exact nature of such cone angle variation is being 
investigated with displacement sensors.  

4. ALIGNMENT AND PERMANENT MOUNTING INTO HOUSING 
The mirror bonded with one of the temporary/transfer mount described above was aligned and subsequently transferred 
from the temporary mount to a permanent structure. The process is currently studied with the aid of a Mirror Housing 
Simulator8. This simulator is a framed structure made of titanium, Ti-15Mo, and consists of bonding tabs, also made of 
titanium, on short rails at its sides (and top and bottom ends.) The mirror housing simulator can accommodate the three 
pairs of mirrors of different radii which are currently available. It is kinematically mounted in the vertical orientation on 
its base plate. Mirror to be bonded onto the housing simulator is transferred from the strongback where the mirror is 
temporary-bonded. Mirror bonded on the strongback in the temporary mount can be oriented and aligned with the aid of 
a 6 degree-of-freedom hexapod. The mirror was subsequently bonded to the tabs of the housing simulator. The bonding 
process employed a set of displacement sensors to monitor the displacement of the mirror due to bonding (forces due to 
the application of epoxy, epoxy’s surface tension, and curing). Epxoy was injected from a syringe which is mounted on 
an actuator. An UV-cured epoxy was used. The position data were fed back to the actuator to maintain good 
displacement. The mirror was subsequently de-bonded from the strongback. The de-bonding process was tested 
repeatedly in test fixtures and was shown to be reliable. Detailed discussion of the alignment and permanent bonding 
processes are reported in a separate publication in this conference.  

Figure 7. The mirror alignment and permanent bonding onto housing simulator. (Left) The housing simulator with 
associated instrumentation. (Right) Mirrors mounted on the housing simulator.  
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5. SUMMARY 
In summary, we have developed a general scheme of mounting method for the segmented mirrors for the IXO mission. 
The approach aims at mounting the mirrors without introducing distortions, as opposed to any attempt to adjust the 
performance along the way. The mount starts with suspending the mirror for negligible distortion, establishing a baseline 
for subsequent bonding. Metrological methods were also developed to characterize the mirror at this state. Several 
options of temporary/transfer mounting are still open, and optimization is being made. The down selection of a prefer 
temporary mount will be made towards the end of this year. Progress in alignment of mirrors and permanent bonding 
onto the housing simulator were made and is expected to achieve sufficient accuracy. A comprehensive series of tests are 
planned, which will include optical metrology of the mirror’s performance in various stages, and final x-ray tests.  
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